Modification of Semi-supervised Algorithm Based on Gaussian Random Fields and Harmonic Functions

نویسندگان

چکیده

In this paper we propose an improvement for a semi-supervised learning algorithm based on Gaussian random fields and harmonic functions. Semi-supervised functions is graph-based method that uses data point similarity to connect unlabeled points with labeled points, thus achieving label propagation. The proposed concerns the way of determining between two by using hybrid RBF-kNN kernel. This makes more resilient noise propagation locality-aware. was tested five synthetic datasets. Results indicate there no datasets big margin classes, however in low approach kernel outperforms existing algorithms simple

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions

An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning problem is then formulated in terms of a Gaussian random field on this graph, where the mean of the field is characterized in terms of harmonic fun...

متن کامل

Semi-supervised learning with Gaussian fields

Gaussian fields (GF) have recently received considerable attention for dimension reduction and semi-supervised classification. This paper presents two contributions. First, we show how the GF framework can be used for regression tasks on high-dimensional data. We consider an active learning strategy based on entropy minimization and a maximum likelihood model selection method. Second, we show h...

متن کامل

Semi-supervised learning : from Gaussian fields to Gaussian processes

We show that the Gaussian random fields and harmonic energy minimizing function framework for semi-supervised learning can be viewed in terms of Gaussian processes, with covariance matrices derived from the graph Laplacian. We derive hyperparameter learning with evidence maximization, and give an empirical study of various ways to parameterize the graph weights.

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

Hidden Markov Random Fields Based LSI Text Semi-supervised Clustering

Semi-supervised learning is an active research field. Previous results shown that unite background information into the original unsupervised clustering problem could archive higher accuracy. In this paper, we explore the cooperation between the pairwise constrains given by the user and the sematic information in natural language. In addition, we reduce the time complexity to make the algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Elektronìka ta sistemi upravlìnnâ

سال: 2023

ISSN: ['1990-5548']

DOI: https://doi.org/10.18372/1990-5548.76.17664